ANSWERS AND EXPLANATIONS

1. Ans.(b)

$$
\begin{aligned}
\mathrm{V}_{\mathrm{s}} & =10 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{L}} & =6 \mathrm{~V} \\
\mathrm{R} & =2 \Omega \\
\mathrm{~V}_{\mathrm{s}}^{2} & =\mathrm{V}_{\mathrm{R}}^{2}+\mathrm{V}_{\mathrm{L}}^{2} \\
\mathrm{~V}_{\mathrm{R}}^{2} & =\mathrm{V}_{\mathrm{S}}^{2}-\mathrm{V}_{\mathrm{L}}^{2}=100-36=64 \\
\Rightarrow \quad \mathrm{~V}_{\mathrm{R}} & =8 \mathrm{~V} \\
\Rightarrow \quad \mathrm{I}_{\mathrm{R}} & =\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{R}}=\frac{8}{2}=4 \mathrm{~A}
\end{aligned}
$$

2. Ans. (a)
3. Ans. (b)
4. Ans. (a)

Power factor of squirrel cage induction motor is low at light load.
5. Ans. (d)

Synchronous generator is a source of both active and reactive power.
6. Ans. (d)

If supply voltage is reduced in case of DC shunt motor then armature voltage and field current both reduces. Hence speed remains constant.
7. Ans. (b)

Overall bandwidth

$$
\begin{aligned}
\mathrm{BW}^{\prime} & =\mathrm{BW} \sqrt{2^{1 / 2}-1} \\
& =20 \sqrt{2^{1 / 2}-1}=20 \times 0.64 \\
& =12.9 \mathrm{kHz}
\end{aligned}
$$

8. Ans. (d)

Feedback

Input
Output

Topology Impedance Impedance

Voltage Series	Increases	Decreases
Voltage Shunt	Decreases	Decreases
Current Series	Increases	Increases
Current Shunt	Decreases	Increases

9. Ans. (b)
10. Ans. (c)
11. Ans. (b)
12. Ans. (b)
13. Ans. (c)
14. Ans. (c)
15. Ans. (d)
16. Ans. (b)
17. Ans. (a)
18. Ans. (c)
19. Ans. (b)
20. Ans. (c)
21. Ans. (a)
22. Ans. (c)

Air vessel is used in reciprocating pump to obtain continuous supply of water at uniform rate.
23. Ans. (a)

$$
\nabla \times q=0
$$

Valid for steady, incompressible flow.
24. Ans. (c)

Shear stress is proportional to velocity gradient.
So shear stress profile will be linear.
25. Ans. (a)
$\sqrt{\frac{\mathrm{L}^{2}-\mathrm{b}^{2}}{3}}$ from A
26. Ans. (d)

$$
\begin{aligned}
\text { Energy } & =\frac{1}{2} \times \text { stress } \times \text { strain } \\
\text { Strain } & \propto \text { Deflection }(\mathrm{y}) \\
\text { Deflection } & \propto \frac{\mathrm{L}}{\mathrm{I}}
\end{aligned}
$$

For rectangle $\mathrm{I}=\frac{\mathrm{bd}^{3}}{12}$

$$
\mathrm{I} \propto \mathrm{~d}^{3}
$$

$$
\begin{aligned}
\frac{\mathrm{y}_{1}}{\mathrm{y}_{2}} & =\left(\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}\right)^{2}=\frac{1}{8} \\
\mathrm{y}_{2} & =8 \mathrm{y}_{1}
\end{aligned}
$$

Hence strain becomes 8 times.

BPSC16 : Civil Engg.

BPSC-AE M ains Test Series

27. Ans. (d)
$\frac{\text { Longitudinal stress }}{\text { Hoop stress }}=\frac{\mathrm{Pd} / 4 \mathrm{t}}{\mathrm{Pd} / 2 \mathrm{t}}=\frac{1}{2}$
28. Ans. (b)
29. Ans. (d)
30. Ans. (b)
31. Ans. (a)
32. Ans. (d)
33. Ans. (b)
34. Ans. (b)
35. Ans. (a)

Mid ordinate,

$$
\begin{aligned}
\mathrm{M} & =\mathrm{R}-\sqrt{\mathrm{R}^{2}-(\mathrm{L} / 2)^{2}} \\
& =50-\sqrt{(50)^{2}-(60 / 2)^{2}} \\
& =10 \mathrm{~m}
\end{aligned}
$$

36. Ans. (d)
37. Ans. (b)

Sag correction for the chain is $\frac{W^{2} L}{24 T^{2}}$
Where, W is total weight of chain.
38. Ans. (b)

From question

$$
\mathrm{m}=100 \mathrm{~kg}
$$

So entropy

$$
\begin{aligned}
\left(\mathrm{S}_{1}\right)_{\text {system }} & =100 \times 0.3=30 \mathrm{~kJ} / \mathrm{K} \\
\left(\mathrm{~S}_{2}\right)_{\text {system }} & =100 \times 0.4=40 \mathrm{~kJ} / \mathrm{K} \\
\left(\mathrm{~S}_{1}\right)_{\text {surrouding }} & =80 \mathrm{~kJ} / \mathrm{K} \\
\left(\mathrm{~S}_{2}\right)_{\text {surrounding }} & =75 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

$$
\begin{aligned}
&(\mathrm{dS})_{\text {universe }}=(\mathrm{dS})_{\text {system }}+(\mathrm{dS})_{\text {surrounding }} \\
&=\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right)_{\text {system }}+\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right)_{\text {surrounding }} \\
&=(40-30)+(75-80) \\
&=10-5=5 \mathrm{~kJ} / \mathrm{K} \\
&(\mathrm{dS})_{\text {universe }}>0 \\
& \Rightarrow \text { Process is irreversible }
\end{aligned}
$$

39. Ans. (b)

$$
\begin{aligned}
\mathrm{U}_{2}-\mathrm{U}_{1} & =\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \mathrm{h}_{\mathrm{i}} \\
\Rightarrow \quad \mathrm{~m}_{2} \mathrm{U}_{2} & =\mathrm{m}_{2} \mathrm{~h}_{\mathrm{i}} \\
\Rightarrow \quad \mathrm{U}_{2} & =\mathrm{h}_{\mathrm{i}}
\end{aligned}
$$

[Enthalpy = Specific internal energy]

$$
\therefore \quad \mathrm{m}_{1}=0[\because \text { initially tank is empty }]
$$

40. Ans. (c)

Clausius-Clapeyron equation is a relationship between the saturation pressure, temperature, enthalpy of evaporation and the specific volume of the two phases involved.
It can be derived from the use of following Maxwell equation:

$$
\begin{aligned}
\left(\frac{\partial p}{\partial T}\right)_{v} & =\left(\frac{\partial S}{\partial V}\right)_{T} \\
\frac{d p}{d T} & =\frac{s_{g}-s_{f}}{v_{g}-v_{f}}=\frac{h_{f g}}{T \cdot v_{f g}}
\end{aligned}
$$

Thus, it can be used to find latent heat during change of phase. Also, enthalpy can be found out from other properties.
41. Ans.(d)
42. Ans.(b)
43. Ans. (a)

A reversible process must be quasi-static and frictionless.

Heat engine cycle in which there is a temperature difference

- The source and the working fluid during heat supply.
- The working fluid and the sink during heat rejection, exhibits external thermal irreversibility.
Thus, P and T of the working substance must not differ, appreciably from those of the surroundings at any state in the process.

BPSC16 : Civil Engg.

44. Ans. (b)

The isothermal process is very slow, while isentropic process is very fast this is what renders impracticality to Carnot cycle.
45. Ans. (b)
46. Ans. (d)
47. Ans. (b)

Terrazzo, is an artificial stone made from pieces of marble and cement and used for floors, facing of walls etc.
48. Ans. (a)

Bitumen consist of 87% of carbon, 11% of hydrogen and 2% of oxygen.
49. Ans. (b)

50. Ans. (b)

A solid foundation or structure laid below ground level to support or strength a building called "underpinning."
Props used to support or hold up something called "shoring".

